

Honeywell | Industrial & Commercial Thermal

Edelstahlkompensatoren EKO Edelstahlschläuche ES

Technische Information · D 10 Edition 09.15l

Edelstahlkompensatoren EKO

- Störungsfreier Maschinenbetrieb durch Aufnahme von Wärme- und Druckdehnungen
- Hohe Berstsicherheit durch vielwandigen Balg
- Axiale und seitliche Bewegungsaufnahme

Edelstahlschläuche ES

- Schutz vor Materialermüdung durch Schwingungsaufnahme
- Angulare und laterale Bewegungsaufnahme
- Ausgleich von Montagetoleranzen durch beliebige Länge

EH[C€

Innaltsverzeichnis		
Edelstahlkompensatoren EKO1	6 Technische Daten	16
Edelstahlschläuche ES1	6.1 Baumaße EKOR	18
Inhaltsverzeichnis	6.2 Baumaße EKOF	19
1 Anwendung3	6.3 Baumaße ES	
1.1 EKO	6.4 Abminderungsfaktoren EKO, ES	21
1.3.1 Gas- und Luftzuleitung am Trockenofen	7 Wartungszyklen 8 Glossar 8.1 Axialbewegung 8.2 Angularbewegung 8.3 Lateralbewegung 8.4 Relativbewegung 8.5 Schwingungsamplitude Rückmeldung	2323232323
EKOR	Kontakt	24

3.3.1 Typenschlüssel Edelstahlschlauch ES......11 4 Projektierungshinweise......12 4.2 Strömungsgeschwindigkeiten.....14 5.1 Flanschdichtung WL-HT......15

1 Anwendung

1.1 EKO

Edelstahlkompensatoren EKO mit Gewinde- und Flanschanschluss

Der Edelstahlkompensator EKO dient zur spannungsfreien, sicheren Rohrinstallation und zur Vermeidung von Schwingungsübertragung in der Gas-, Luft- und Wasserinstallation.

Der Edelstahlkompensator EKO kann Wärme- und Druckdehnungen in Rohrleitungen kompensieren, Schwingungen elastisch gelagerter Aggregate von angeschlossenen Systemen abkoppeln und Relativbewegungen zwischen Anlagenteilen elastisch ausgleichen, siehe Seite 23 (Relativbewegung). Dadurch werden Kräfte und Momente an den Anschlüssen reduziert.

Der Edelstahlkompensator mit feuerverzinktem Flansch erlaubt die Verwendung von Deponiegas.

Optional können die Edelstahlkompensatoren EKO mit einer integrierten Drosselblende zum Anpassen von Gas- und Luftmenge für Gasbrenner geliefert werden.

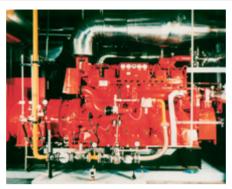
Der Edelstahlkompensator EKO..R kann für Betriebstemperaturen bis 250 °C eingesetzt werden. Der EKO..F, EKO..FZ ist hochtemperaturbeständig (HTB) in Verbindung mit Flanschdichtungen Typ WL-HT, siehe Seite 15 (Zubehör).

1.2 ES

Edelstahlschläuche ES mit Gewinde- und Flanschanschluss

Der Edelstahlschlauch ES dient zur spannungsfreien, flexiblen Verbindung von Geräten und Leitungen und zur Vermeidung von Schwingungsübertragung in der Gas-, Luft- und Wasserinstallation.

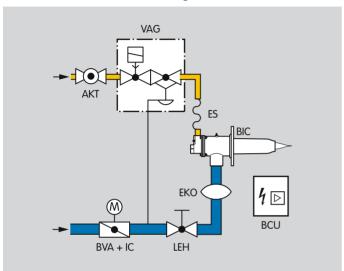
Der Edelstahlschlauch ES kann Schwingungen mit hoher Frequenz und kleiner Amplitude z. B. in Brennstoffleitungen aufnehmen, Körperschall z. B. von Rohrleitungen abbauen, Montageungenauigkeiten zwischen Aggregaten ausgleichen und als flexibles Leitungselement z. B. an Pressen dienen. Er kann an Stellen mon-


tiert werden, an denen keine Festpunkte angeordnet werden können

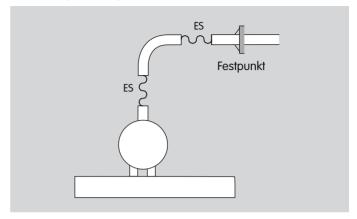
Der Edelstahlschlauch ES ist optional in jeder Länge lieferbar.

Anwendung

Edelstahlschläuche in Versorgungsleitungen von Gebäuden


Edelstahlschläuche an Versorgungsleitungen am Gasmotor

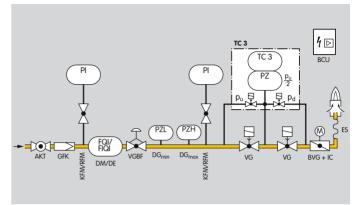
Edelstahlschläuche und -kompensatoren am Ofen in einer Ziegelbrennerei


1.3 Anwendungsbeispiele

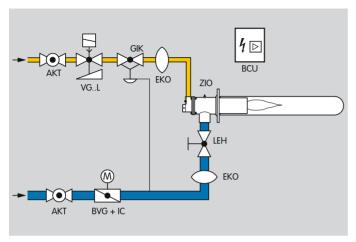
1.3.1 Gas- und Luftzuleitung am Trockenofen

Vom Brenner wirken Druck- und Temperatureinflüsse auf die Gas- und Luftzuleitung. Edelstahlschlauch und Edelstahlkompensator kompensieren die Druck- und Wärmedehnung in den Rohrleitungen. Sie sorgen für einen störungsfreien Betrieb.

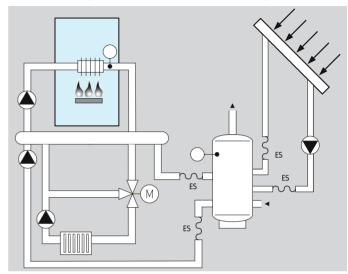
1.3.2 Abgasanlage am Kompressor


Zwei rechtwinklig montierte Edelstahlschläuche in der Abgasleitung vermindern allseitige Schwingungen, die vom Aggregat auf die angeschlossene Leitung wirken.

1.3.3 Brennstoffleitungen am Gasmotor


Beim Anschluss eines Gasmotors an die Brennstoffleitungen können an den Verbindungsstellen Montagetoleranzen auftreten. Diese lassen sich mit Edelstahlschläuchen einfach ausgleichen.

1.3.4 Gasdruckregel-, Mess- und Sicherheitsstrecke


An einer Gasstrecke z. B. für thermische Abluftreinigungsanlagen bietet der Edelstahlschlauch einen guten und kostengünstigen Schutz vor Wärmedehnungen. Er reduziert den Körperschall in der Rohrleitung.

1.3.5 Gas- und Luftzuleitung am Aluminiumschmelzofen

Druck- und Temperatureinflüsse wirken auf die Gasund Luftzuleitung. Die Edelstahlkompensatoren kompensieren die Druck- und Wärmedehnung in den Rohrleitungen. Für hohe Brennerleistung bei niedrigem Betriebsdruck sind die Edelstahlkompensatoren EKO..10P speziell auf den Kromschröder-Brenner ZIO abgestimmt.

1.3.6 Leitungen an Heiz- und Solaranlage

Die Leitungen zwischen Kollektor, Heizkessel und Speicher werden an die Gebäudearchitektur angepasst. Mit flexiblen Edelstahlschläuchen werden Montageungenauigkeiten günstig ausgeglichen.

2 Zertifizierung

Zertifikate EKO, siehe Docuthek.

Zertifikate ES, siehe Docuthek

EU-zertifiziert

- DIN-DVGW-geprüft und registriert.

Тур	DVGW-Prüfzeichen	Prüfgrundlage
EKORI, EKORA	NG-4504AS3148	DIN 30681
EKOF100P, EKOF-Z	NG-4504AR3924	DIN 30681
ES	NG-4601AR0759	DIN 3384

 Für alle Gase nach DVGW-Arbeitsblatt G 260, Luft und Wasser.

Eurasische Zollunion

Das Produkt EKO/ES entspricht den technischen Vorgaben der eurasischen Zollunion (Russische Föderation, Weißrussland, Kasachstan).

3 Auswahl

3.1 Edelstahlkompensator mit Gewindeanschluss EKO..R

	RI	RA
EKO 15	•	•
EKO 20	•	•
EKO 25	•	•
EKO 32	•	•
EKO 40	•	•
EKO 50	•	•

Bestellbeispiel

EKO 25RA

3.1.1 Typenschlüssel Edelstahlkompensator mit Gewindeanschluss EKO..R

Code	Beschreibung
EKO	Edelstahlkompensator
15, 20, 25, 32, 40, 50	Nennweite
RI RA	Rp-Innengewinde R-Außengewinde

Baulänge, siehe Seite 18 (Baumaße EKO..R).

3.2 Edelstahlkompensator mit Flanschanschluss EKO..F

	F	10P	100P	-Z
EKO 25	•			•
EKO 32	•			•
EKO 40	•			•
EKO 50	•			•
EKO 65	•			•
EKO 80	•			•
EKO 100	•			•
EKO 125	•			•
EKO 150	•			•
EKO 200	•		•	•
EKO 250	•	•		
EKO 350	•	•		

Bestellbeispiel

EKO 200F100P

3.2.1 Typenschlüssel Edelstahlkompensator mit Flanschanschluss EKO..F

Code	Beschreibung
EKO	Edelstahlkompensator
25 – 350	Nennweite
F 10P 100P	Flansch mit Lochbild nach PN 10, pu max. 10 bar Flansch mit Lochbild nach PN 16, pu max. 1 bar Flansch mit Lochbild nach PN 16, pu max. 16 bar
-Z	feuerverzinkt

Baulänge, siehe Seite 19 (Baumaße EKO..F).

3.3 Edelstahlschlauch ES

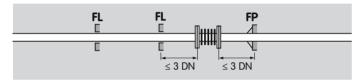
	RA	F	500	800	1000
ES 8	•		•	•	•
ES 10	•		•	•	•
ES 16	•		•	•	•
ES 20	•		•	•	•
ES 25	•		•	•	•
ES 32	•		•	•	•
ES 40	•		•	•	•
ES 50	•		•	•	•
ES 65		•	•	•	•
ES 80		•	•	•	•
ES 100		•	•	•	•

<u>Bestellbei</u>spiel

ES 32RA800

3.3.1 Typenschlüssel Edelstahlschlauch ES

Code	Beschreibung
ES	Edelstahlschlauch
8 – 100	Nennweite
RA	R-Außengewinde
F	Flansch nach EN 1092-1
500, 800, 1000	Länge [mm]*


^{*} Weitere Längen auf Anfrage

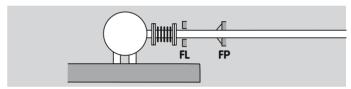
4 Projektierungshinweise

4.1 Einbau

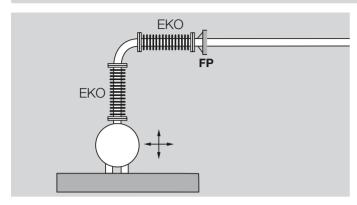
Wird der Edelstahlkompensator EKO oder der Edelstahlschlauch ES bei von außen einwirkenden aggressiven Medien eingesetzt, empfehlen wir einen zusätzlichen Schutz, z. B. einen Schrumpfschlauch, vorzusehen.

4.1.1 EKO

Zwischen zwei Festpunkten oder Führungslagern nur einen Kompensator montieren.


Abstand zwischen Kompensator und Festpunkt **FP** oder Führungslager $FL \le 3$ DN.

Leitungsabschnitte an den Enden mit Festpunkten versehen, die die axiale Druckkraft, die Verstellkraft des Kompensators und die Reibungskraft der Führungslager aufnehmen können.


Bewegungsbeanspruchung:

A = Angularbewegung, **L** = Lateralbewegung, siehe Bewegungsaufnahme, Seite 18 (Baumaße EKO..R) oder Seite 19 (Baumaße EKO..F).

Schwingungsaufnahme: Kompensator möglichst dicht an das schwingende Aggregat montieren, um zusätzliche Bewegungen zu vermeiden. Direkt hinter dem Kompensator die Rohrleitung, unabhängig vom schwingenden Aggregat, über ein Führungslager **FL** oder einen Festpunkt **FP** befestigen.

Projektierungshinweise

Bei Schwingungen in alle Richtungen einen zweiten Kompensator rechtwinkelig zum ersten einbauen.

Zur Aufnahme der axialen Druckkraft für ausreichende Standfestigkeit des schwingenden Aggregats sorgen.

Die maximale Schwingungsamplitude darf ≤ 5 bis 10 % der Bewegungsaufnahme betragen. Bewegungsaufnahme

siehe Seite 18 (Baumaße EKO..R) oder Seite 19 (Baumaße EKO..F).

Vorspannung für die zu erwartende Dehnung oder Stauchung festlegen:

$$V = D \times \left(0,5 - \frac{t_E - t_{min}}{t_{max} - t_{min}}\right)$$

V = Vorspannung [mm]

D = Dehnung Rohrleitung [mm]

t_F = Temperatur Einbau [°C]

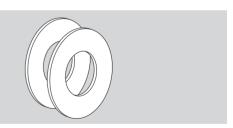
t_{min} = min. Betriebstemperatur [°C]

 t_{max} = max. Betriebstemperatur [°C]

Positive Vorspannung = Kompensator dehnen, negative Vorspannung = Kompensator stauchen.

Die Baulücke anhand der Baulänge des Kompensators festlegen:

$$L_E = B_L \pm V$$

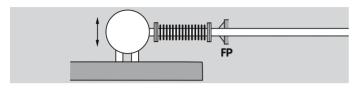

L_F = Baulücke

B_L = Baulänge

V = Vorspannung

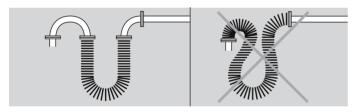
Bei Verwendung einer Drosselblende, siehe Seite 15 (Zubehör),vergrößert sich die Baulänge um 3 mm.

EKO..F

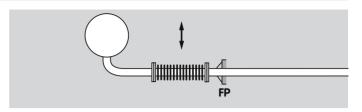


Hochtemperaturbeständig nur in Verbindung mit Flanschdichtung Typ WL-HT, siehe Seite 15 (Zubehör).

Projektierungshinweise

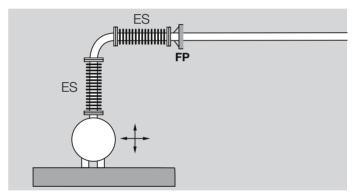

4.1.2 ES

Torsionsbeanspruchung am Edelstahlschlauch vermeiden



Bei Dehnungs- und Schwingungsaufnahme direkt hinter dem Edelstahlschlauch die Rohrleitung über einen Festpunkt **FP** befestigen.

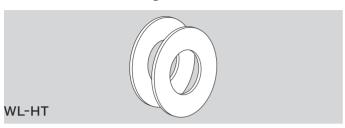
Den Mindestbiegeradius bei einmaliger oder bei häufigen Bewegungen beachten, siehe Seite 20 (Baumaße ES).



Durch Verwendung starrer Rohrbögen wird ein unzulässiges Abbiegen unmittelbar hinter Armatur vermieden.

Den Edelstahlschlauch immer rechtwinklig zur Bewegung einbauen.

Auf Abstand zu Wand oder Boden achten.


Bei Schwingungen in alle Richtungen einen zweiten Edelstahlschlauch rechtwinklig zum ersten einbauen.

4.2 Strömungsgeschwindigkeiten

Zur Vermeidung von Strömungs- oder Pfeifgeräuschen sollte die Strömungsgeschwindigkeit 6 m/s (1180 ft/min) nicht überschreiten.

5 Zubehör

5.1 Flanschdichtung WL-HT

Hochtemperaturbeständigkeit (HTB) beim EKO..F, EKO..FZ nur in Verbindung mit Flanschdichtung Typ WL-HT für den Ein- und Ausgangsflansch.

Flanschdichtung	Bestell-Nr.
WL-HT DN 25	03352221
WL-HT DN 32	03352222
WL-HT DN 40	03352223
WL-HT DN 50	03352224
WL-HT DN 65	03352225
WL-HT DN 80	03352226
WL-HT DN 100	03352227
WL-HT DN 125	03352228
WL-HT DN 150	03352229
WL-HT DN 200	03352220

5.2 Drosselblende

Für Edelstahlkompensatoren EKO können auf Wunsch Drosselblenden aus V2A-Stahl geliefert werden. Bitte Angebot anfordern.

6 Technische Daten

Medien: alle Gase nach DVGW-Arbeitsblatt G 260, Luft und Wasser oder auch Gase nach DVGW-Arbeitsblatt G 262

EKO

Der Druckverlust am EKO ist etwa doppelt so hoch wie bei einer gleichlangen glattflächigen Rohrleitung. Balg aus Edelstahl 1.4571.

EKO..R

Klemmringe aus Edelstahl 1.4301,

Verschraubung aus Temperguss verzinkt,

Dichtung, REINZ-AFM 34 nach DIN 3535-6, flachdichtend, hochtemperaturbeständig (HTB).

Betriebstemperatur:

Luft: -20 bis +250 °C.

Gas: -20 bis +250 °C,

Wasser: O bis +100 °C

Kurzfristige Temperaturspitzen bis 300 °C können auf-

genommen werden.

Max. Eingangsdruck MOP:

Luft und Wasser: 10 bar,

Gas: 5 bar.

Zulässigen Eingangsdruck bei dynamischer Belastung und erhöhter Temperatur berücksichtigen, siehe Seite 21 (Abminderungsfaktoren EKO, ES).

EKO..F

Balg und Bördel aus Edelstahl:

1.4571 bis DN 100, 1.4541 > DN 100.

Betriebstemperatur:

Luft: -20 bis +500 °C,

Gas: -20 bis +150 °C,

Wasser: 0 bis +100 °C.

Max. Eingangsdruck MOP: 10 bar,

EKO 250F10P, EKO 350F10P: 1 bar.

Zulässigen Eingangsdruck bei dynamischer Belastung und erhöhter Temperatur berücksichtigen, siehe Seite 21 (Abminderungsfaktoren EKO, ES).

EKO..F: Flansch galvanisch verzinkt, EKO..FZ: Flansch feuerverzinkt.

Hochtemperaturbeständig nur in Verbindung mit Flanschdichtungen Typ WL-HT, siehe Seite 15 (Zubehör).

Technische Daten

ES

Der Druckverlust ist etwa zwei- bis dreimal so hoch wie bei einer gleichlangen glattflächigen Rohrleitung. Bei Einbau im 90°-Bogen erhöht er sich max. um den Faktor 2

Werkstoff: Edelstahl-Wellschlauch aus 1.4541, Edelstahlumflechtung aus 1.4301.

ES..RA

Beidseitige Anschlussgewinde DN 8 bis DN 25 aus Automatenstahl 1.0718, ab DN 32 aus Stahl 1.0037.

Anschluss:

1 x Außengewinde, konisch dichtende Verschraubung, 1 x Sechskantnippel und Außengewinde nach EN 10226-1.

Edelstahlfittings geschweißt.

Lose Verschraubungsteile aus Temperguss/Stahlguss verzinkt

Betriebstemperatur:

Luft, Gas, Wasser: -10 bis +300 °C, in Abhängigkeit des gewählten Dichtmittels kann die zulässige Betriebstemperatur herabgesetzt werden.

 $Max.\ Eingangsdruck\ p_u:$

Luft und Wasser: 16 bar,

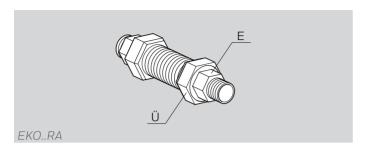
Gas: 4 bar.

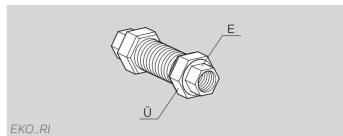
Zulässigen Eingangsdruck bei dynamischer Belastung und erhöhter Temperatur berücksichtigen, siehe Seite 21 (Abminderungsfaktoren EKO, ES).

FS.F

Vorschweißbördel aus Edelstahl 1.4541, (loser Flansch aus Stahl, verzinkt, PN 16 nach DIN EN 1092-1).

Betriebstemperatur:

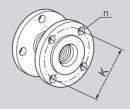

Luft, Gas, Wasser: -10 bis +300 °C.


Max. Eingangsdruck pu:

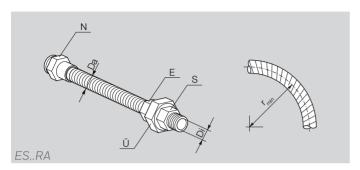
Luft, Gas und Wasser: 16 bar,

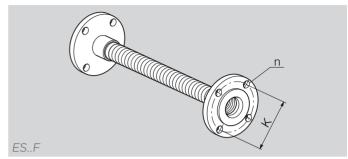
Zulässigen Eingangsdruck bei dynamischer Belastung und erhöhter Temperatur berücksichtigen, siehe Seite 21 (Abminderungsfaktoren EKO, ES).

6.1 Baumaße EKO..R



	Anschluss		Verschraubung SW		Schrauben- anzahl	Bew	vegungsaufnal	ıme	Baulänge (± 2 mm)	Gewicht
Тур			[mm]				±[mm]		[mm]	[kg]
	DN		Ü*	E*	n	Δ axial	Δ angular	Δ lateral		
EKO 15RA	15	R 1/2	41	26	-	12	50	8	157	0,41
EKO 20RA	20	R 3/4	50	32	-	14	45	7	173	0,68
EKO 25RA	25	R1	55	38	-	15	40	8	194	0,91
EKO 32RA	32	R 11/4	67	48	-	15	35	8	215	1,27
EKO 40RA	40	R 11/2	75	54	_	17	35	9	240	1,71
EKO 50RA	50	R 2	90	66	-	21	30	10	270	2,46
EKO 15RI	15	Rp 1/₂	41	26	_	12	50	8	125	0,39
EKO 20RI	20	Rp 3/4	50	32	-	14	45	7	135	0,66
EKO 25RI	25	Rp 1	55	38	-	15	40	8	150	0,72
EKO 32RI	32	Rp 11/4	67	48	-	15	35	8	165	1,00
EKO 40RI	40	Rp 11/2	75	54	_	17	35	9	190	1,40
EKO 50RI	50	Rp 2	90	66	-	21	30	10	210	2,05


 $\ddot{U}^* = \ddot{U}$ berwurfmutter, $E^* = E$ inlegeteil.


6.2 Baumaße EKO..F

	Anschluss		Lochkreis	Schrauben- anzahl	Be	Baulänge (± 2 mm)	Gewicht		
Тур			[mm]			± [mm]		[mm]	[kg]
	DN	Bohrbild	К	n	Δ axial	Δ angular	Δ lateral		
EKO 25F	25	PN 10/16	85	4	7	18	1,5	60	2,30
EKO 32F	32	PN 10/16	100	4	8	17	2	65	3,42
EKO 40F(Z)	40	PN 10/16	110	4	12	18	2	75	3,95
EKO 50F(Z)	50	PN 10/16	125	4	12	18	2,5	95	4,80
EKO 65F(Z)	65	PN 10/16	145	4	17	18	3,5	110	5,90
EKO 80F(Z)	80	PN 10/16	160	8	20	18	3,5	125	7,20
EKO 100F(Z)	100	PN 10/16	180	8	20	16	4,5	150	7,82
EKO 125F(Z)	125	PN 10/16	210	8	22,5	14	4,1	175	11,30
EKO 150F(Z)	150	PN 10/16	240	8	28	16,5	7	200	13,00
EKO 200F(Z)	200	PN 10	295	8	40	16	7,5	240	17,30
EKO 200F100P	200	PN 16	295	12	40	16	7,5	240	16,70
EKO 250F10P	250	PN 16	355	12	36	13	4,2	190	17,7
EKO 350F10P	350	PN 16	470	16	30	9	2	168	28,7

6.3 Baumaße ES

Тур	Anschluss		Ve		aubur mm]	ng	Lochkreis	Schrauben- anzahl	du	lauch- irch- esser	Mindest- Biegeradius r _{min} [mm]	Nenn-Biegeradius r _n [mm]	Gewicht
	DN [mm]		N*	E*	Ü*	S*	K [mm]	n	Di [mm]	Da [mm]	einmalige Biegung	häufige Biegung	[kg]
ES 8RA	8	R 1/4	14	13	28	19	-	-	8,3	13,7	32	120	0,32
ES 10RA	10	R 3/8	19	16	32	22	-	-	10,2	15,7	38	130	0,40
ES 16RA	16	R 1/2	22	19	41	26	-	_	16,2	23,3	58	160	0,63
ES 20RA	20	R 3/4	27	26	50	32	-	-	20,2	28,3	70	170	0,92
ES 25RA	25	R1	36	32	55	38	-	_	25,5	34,2	85	190	1,34
ES 32RA	32	R 11/4	46	46	67	48	-	-	34,2	43,0	105	260	1,87
ES 40RA	40	R 11/2	50	55	75	54	-	_	40,1	52,0	130	300	2,37
ES 50RA	50	R2	60	65	90	66	-	-	50,4	62,6	160	320	3,41
ES 65F	65	DN 65	-	-	-	-	145	4	65,3	81,2	200	460	8,24
ES 80F	80	DN 80	-	-	-	-	160	8	80,2	98,0	240	660	10,51
ES 100F	100	DN 100	-	-	-	-	180	8	100,0	119,4	290	750	11,73

 N^* = Gewindenippel, E^* = Einlegeteil, \ddot{U}^* = \ddot{U} berwurfmutter, S^* = Einschraubteil.

6.4 Abminderungsfaktoren EKO, ES

Druckpulsation, Druckstöße, Druckschwankungen, häufige Bewegungen, Schwingungen und erhöhte Temperaturen vermindern den max. zulässigen Eingangsdruck.

Zulässigen Eingangsdruck berechnen:

$$p_{max} = MOP x k_d x k_t$$

p_{max.} = zulässiger Betriebsdruck [bar]

MOP = maximal zulässiger Betriebsdruck [bar]

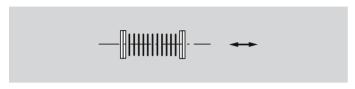
k_d = dynamischer Abminderungsfaktor

 k_t = Temperaturabminderungsfaktor

6.4.1 Dynamischer Abminderungsfaktor k_d

	geringe, langsame Bewegung; keine Schwingung	häufige, gleichförmige Bewegung; Schwingungen	rhythmische und stoßartige Bewegung; starke Vibrationen
stationäre oder langsame und gleichförmige Strömung	1	0,80	0,40
pulsierende und ungleichförmige Strömung	0,80	0,63	0,32
rhythmische und stoßartige Strömung	0,32	0,20	Auf Anfrage

6.4.2 Temperaturabminderungsfaktor k_t

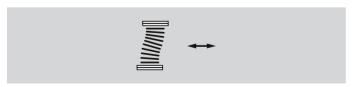

Temperatur °C	EKO/ES ab DN 125 Werkstoff 1.4541	EKO bis DN 100 Werkstoff 1.4571
20	1,00	1,00
50	0,93	0,92
100	0,83	0,80
150	0,78	0,76
200	0,74	0,72
250	0,70	0,68
300	0,66	0,64
350	0,64	0,62
400	0,62	0,60
450	0,60	0,59
500	0,59	0,58
550	0,58	0,58

7 Wartungszyklen

Der Edelstahlkompensator EKO und der Edelstahlschlauch ES sind wartungsarm.

8 Glossar

8.1 Axialbewegung


Die Bewegung des Edelstahlkompensators oder Edelstahlschlauches wird in Achsenrichtung aufgenommen.

8.2 Angularbewegung

Die Bewegungsaufnahme des Edelstahlkompensators oder Edelstahlschlauches findet unter einem bestimmten Winkel statt

8.3 Lateralbewegung

Die Bewegung des Edelstahlkompensators oder Edelstahlschlauches wird seitlich aufgenommen.

8.4 Relativbewegung

Die Relativbewegung ist die auf einen anderen Körper bezogene Bewegung eines Körpers.

8.5 Schwingungsamplitude

Die Schwingungsamplitude ist der größte Ausschlag einer Schwingung vom gestauchten zum gestreckten Kompensator

Rückmeldung

Zum Schluss bieten wir Ihnen die Möglichkeit, diese "Technische Information (TI)" zu beurteilen und uns Ihre Meinung mitzuteilen, damit wir unsere Dokumente weiter verbessern und an Ihre Bedürfnisse anpassen.

Übersichtlichkeit

Information schnell gefunden

Lange gesucht

Information nicht gefunden

Was fehlt?

Keine Aussage

Verwendung

Produkt kennenlernen

Produktauswahl Projektierung

Informationen nachschlagen

Bemerkung

Verständlichkeit

Verständlich Zu kompliziert

Navigation

Keine Aussage

Keine Aussage

Ich finde mich zurecht

Ich habe mich verlaufen"

Umfang

Zu wenig

Ausreichend Zu umfangreich

Keine Aussage

Mein Tätigkeitsbereich

Technischer Bereich

Kaufmännischer Bereich

Keine Aussage

Kontakt

Elster GmbH Postfach 2809 · 49018 Osnabrück Strotheweg 1 · 49504 Lotte (Büren) Deutschland

Tel. +49 541 1214-0 Fax +49 541 1214-370 info@kromschroeder.com www.kromschroeder.de Die aktuellen Adressen unserer internationalen Vertretungen finden Sie im Internet: www.kromschroeder.de/Weltweit.20.0.html

Technische Änderungen, die dem Fortschritt dienen, vorbehalten.
Copyright © 2016 Elster GmbH
Alle Rechte vorbehalten.

